Mimicking liver sinusoidal structures and functions using a 3D-configured microfluidic chip.
نویسندگان
چکیده
Physiologically, four major types of hepatic cells - the liver sinusoidal endothelial cells, Kupffer cells, hepatic stellate cells, and hepatocytes - reside inside liver sinusoids and interact with flowing peripheral cells under blood flow. It is hard to mimic an in vivo liver sinusoid due to its complex multiple cell-cell interactions, spatiotemporal construction, and mechanical microenvironment. Here we developed an in vitro liver sinusoid chip by integrating the four types of primary murine hepatic cells into two adjacent fluid channels separated by a porous permeable membrane, replicating liver's key structures and configurations. Each type of cells was identified with its respective markers, and the assembled chip presented the liver-specific unique morphology of fenestration. The flow field in the liver chip was quantitatively analyzed by computational fluid dynamics simulations and particle tracking visualization tests. Intriguingly, co-culture and shear flow enhance albumin secretion independently or cooperatively, while shear flow alone enhances HGF production and CYP450 metabolism. Under lipopolysaccharide (LPS) stimulations, the hepatic cell co-culture facilitated neutrophil recruitment in the liver chip. Thus, this 3D-configured in vitro liver chip integrates the two key factors of shear flow and the four types of primary hepatic cells to replicate key structures, hepatic functions, and primary immune responses and provides a new in vitro model to investigate the short-duration hepatic cellular interactions under a microenvironment mimicking the physiology of a liver.
منابع مشابه
Investigating Nonalcoholic Fatty Liver Disease in a Liver-on-a-Chip Microfluidic Device
BACKGROUND AND AIM Nonalcoholic fatty liver disease (NAFLD) is a chronic liver disease worldwide, ranging from simple steatosis to nonalcoholic steatohepatitis, which may progress to cirrhosis, eventually leading to hepatocellular carcinoma (HCC). HCC ranks as the third highest cause of cancer-related death globally, requiring an early diagnosis of NAFLD as a potential risk factor. However, the...
متن کاملA microfluidic 3D hepatocyte chip for drug toxicity testing.
We have developed a microfluidic 3D hepatocyte chip (3D HepaTox Chip) for in vitro drug toxicity testing to predict in vivo drug hepatotoxicity. The 3D HepaTox Chip is based on multiplexed microfluidic channels where a 3D microenvironment is engineered in each channel to maintain the hepatocytes' synthetic and metabolic functions. The multiplexed channels allow for simultaneous administration o...
متن کاملRapid prototyping of three-dimensional microfluidic mixers in glass by femtosecond laser direct writing.
The creation of complex three-dimensional (3D) microfluidic systems has attracted significant attention from both scientific and applied research communities. However, it is still a formidable challenge to build 3D microfluidic structures with arbitrary configurations using conventional planar lithographic fabrication methods. Here, we demonstrate rapid fabrication of high-aspect-ratio microflu...
متن کاملThree-dimensional interconnected microporous poly(dimethylsiloxane) microfluidic devices.
This technical note presents a fabrication method and applications of three-dimensional (3D) interconnected microporous poly(dimethylsiloxane) (PDMS) microfluidic devices. Based on soft lithography, the microporous PDMS microfluidic devices were fabricated by molding a mixture of PDMS pre-polymer and sugar particles in a microstructured mold. After curing and demolding, the sugar particles were...
متن کاملThe body-on-a-chip concept: possibilities and limitations
Recently, Frey et al. (2014) have established a reconfigurable microfluidic platform to study multi-tissue interactions. This platform contains multiple spheroids of different cell types in hanging drops. The hanging drops are connected by microfluidic networks. The path of the liquid flow through the hanging drops is precisely controlled and offers the possibility to perfuse them either sequen...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Lab on a chip
دوره 17 5 شماره
صفحات -
تاریخ انتشار 2017